沈阳市网站建设_网站建设公司_Linux_seo优化
2026/1/15 18:04:41 网站建设 项目流程
3800. Minimum Cost to Make Two Binary Strings Equal

You are given two binary strings s and t, both of length n, and three positive integers flipCostswapCost, and crossCost.

You are allowed to apply the following operations any number of times (in any order) to the strings s and t:

  • Choose any index i and flip s[i] or t[i] (change '0' to '1' or '1' to '0'). The cost of this operation is flipCost.
  • Choose two distinct indices i and j, and swap either s[i] and s[j] or t[i] and t[j]. The cost of this operation is swapCost.
  • Choose an index i and swap s[i] with t[i]. The cost of this operation is crossCost.

Return an integer denoting the minimum total cost needed to make the strings s and t equal.

Example 1:

Input: s = "01000", t = "10111", flipCost = 10, swapCost = 2, crossCost = 2

Output: 16

Explanation:

We can perform the following operations:

  • Swap s[0] and s[1] (swapCost = 2). After this operation, s = "10000" and t = "10111".
  • Cross swap s[2] and t[2] (crossCost = 2). After this operation, s = "10100" and t = "10011".
  • Swap s[2] and s[3] (swapCost = 2). After this operation, s = "10010" and t = "10011".
  • Flip s[4] (flipCost = 10). After this operation, s = t = "10011".

The total cost is 2 + 2 + 2 + 10 = 16.

Example 2:

Input: s = "001", t = "110", flipCost = 2, swapCost = 100, crossCost = 100

Output: 6

Explanation:

Flipping all the bits of s makes the strings equal, and the total cost is 3 * flipCost = 3 * 2 = 6.

Example 3:

Input: s = "1010", t = "1010", flipCost = 5, swapCost = 5, crossCost = 5

Output: 0

Explanation:

The strings are already equal, so no operations are required. 

Constraints:

  • n == s.length == t.length
  • 1 <= n <= 105​​​​​​​
  • 1 <= flipCost, swapCost, crossCost <= 109
  • s and t consist only of the characters '0' and '1'.
class Solution:def minimumCost(self, s: str, t: str, flipCost: int, swapCost: int, crossCost: int) -> int:# scenario1 全部用flipdiff = sum([s[i] != t[i] for i in range(len(s))])flip = diff * flipCost# scenario2 尽量用swap,然后用flips_zero = sum([s[i] != t[i] and s[i] == '0' for i in range(len(s))])t_zero = diff - s_zerosmaller, bigger = min(s_zero, t_zero), max(s_zero, t_zero)swap = smaller * swapCost + (diff - smaller * 2) * flipCost# scenario3 先用crossswap,再用swap,然后用flipcross_count = (bigger - smaller) // 2smaller += cross_countbigger -= cross_countcross = cross_count * crossCost + smaller * swapCost + (diff - smaller * 2) * flipCostreturn min(flip, swap, cross)'''
3种情况:
1. 都用flip
2. swap + flip 
3. crossswap + flip100000
001111s:01000
t:01111
diff = 5
s_0 = 1
t_0 = 410000
01111
diff = 5
s_0 = 1
t_0 = 4smaller = 1
bigger = 5
cross = (bigger - smaller) // 211000
00111'''

 

3789. Minimum Cost to Acquire Required Items
 
Solved
Medium
 
Hint

You are given five integers cost1cost2costBothneed1, and need2.

There are three types of items available:

  • An item of type 1 costs cost1 and contributes 1 unit to the type 1 requirement only.
  • An item of type 2 costs cost2 and contributes 1 unit to the type 2 requirement only.
  • An item of type 3 costs costBoth and contributes 1 unit to both type 1 and type 2 requirements.

You must collect enough items so that the total contribution toward type 1 is at least need1 and the total contribution toward type 2 is at least need2.

Return an integer representing the minimum possible total cost to achieve these requirements.

 

Example 1:

Input: cost1 = 3, cost2 = 2, costBoth = 1, need1 = 3, need2 = 2

Output: 3

Explanation:

After buying three type 3 items, which cost 3 * 1 = 3, the total contribution to type 1 is 3 (>= need1 = 3) and to type 2 is 3 (>= need2 = 2).
Any other valid combination would cost more, so the minimum total cost is 3.

Example 2:

Input: cost1 = 5, cost2 = 4, costBoth = 15, need1 = 2, need2 = 3

Output: 22

Explanation:

We buy need1 = 2 items of type 1 and need2 = 3 items of type 2: 2 * 5 + 3 * 4 = 10 + 12 = 22.
Any other valid combination would cost more, so the minimum total cost is 22.

Example 3:

Input: cost1 = 5, cost2 = 4, costBoth = 15, need1 = 0, need2 = 0

Output: 0

Explanation:

Since no items are required (need1 = need2 = 0), we buy nothing and pay 0.

 

Constraints:

  • 1 <= cost1, cost2, costBoth <= 106
  • 0 <= need1, need2 <= 109
class Solution:def minimumCost(self, cost1: int, cost2: int, costBoth: int, need1: int, need2: int) -> int:common = min(need1, need2)common_cost = min(common * (cost1 + cost2), common * costBoth)if common < need1:common_cost += min(cost1, costBoth) * (need1 - common)elif common < need2:common_cost += min(cost2, costBoth) * (need2 - common)return common_cost

 

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询