和田地区网站建设_网站建设公司_Oracle_seo优化
2026/1/15 16:10:52 网站建设 项目流程

🚀 快速了解部分

基础信息(英文):

  1. 题目: InternVLA-A1: Unifying Understanding, Generation and Action for Robotic Manipulation
  2. 时间年月: 2026年1月
  3. 机构名: Shanghai Artificial Intelligence Laboratory (上海人工智能实验室)
  4. 3个英文关键词: Vision-Language-Action (VLA), World Models, Robotic Manipulation

1句话通俗总结本文干了什么事情
本文提出了一种名为 InternVLA-A1 的机器人模型,它把“看懂世界”、“想象未来画面”和“执行动作”融合在一个系统里,让机器人不仅能听懂指令,还能预判动作带来的物理变化,从而在动态环境中(比如传送带上)更聪明地完成任务。

研究痛点:现有研究不足 / 要解决的具体问题

  • 语义与物理的割裂:现有的 VLA 模型(基于大语言模型)擅长语义理解,但无法推断物理世界动态(如惯性、接触),导致在动态场景(如传送带)中表现不佳。
  • 世界模型的局限:基于视频预测的世界模型(World Models)虽然能预测动态,但缺乏语义理解,且对预测误差很敏感(容易“脑补”出错误的画面)。
  • 数据获取困难:纯靠真实机器人收集数据成本太高、长尾场景覆盖不足;纯靠模拟数据又存在“仿真到现实(sim-to-real)”的差距。

核心方法:关键技术、模型或研究设计(简要)

  • 统一架构:采用MoT(Mixture-of-Transformers)架构,包含三个专家模块:理解专家(处理视觉语言)、生成专家(预测未来画面/物理动态)、动作专家(输出控制指令)。
  • 混合数据策略:构建“数据金字塔”,结合大规模开源真实数据(AgiBot-World)和高保真合成数据(InternData-A1),兼顾物理真实性和场景多样性。

🔍 深入了解部分

相比前人创新在哪里

  • 架构创新:不同于以往将“理解”和“预测”割裂的做法,InternVLA-A1 在一个统一的模型中通过掩码自注意力机制,让三个专家模块(理解、生成、动作)顺序协作,实现了语义推理与物理预测的深度融合。
  • 效率与效果平衡:解决了传统视频生成模型推理速度慢的问题,通过优化的生成专家实现了实时(约13Hz)的视觉预演和动作生成。

解决方法/算法的通俗解释
你可以把这个模型想象成一个“会预演的机器人”。

  1. 看和听(理解专家):先看一眼当前的环境,听懂你的指令。
  2. 脑内小剧场(生成专家):在动手前,它先在脑子里快速“播放”一下接下来几秒画面会变成什么样(比如手伸过去物体怎么移动)。
  3. 动手(动作专家):结合刚才的“脑内预演”,计算出最精确的电机控制指令去执行动作。如果预演发现会撞到东西,它就会调整动作。

解决方法的具体做法

  • 模型结构
    • 理解专家:基于 InternVL3 或 Qwen3-VL,处理图像和文本。
    • 生成专家:使用 VAE(变分自编码器)将图像压缩为潜空间特征,预测未来的潜变量。
    • 动作专家:使用Flow Matching(流匹配)算法,将噪声转化为具体的动作序列。
  • 训练流程
    • 预训练:在混合的合成与真实数据上进行大规模预训练。
    • 后训练:在特定任务的小规模真实数据上进行微调。

基于前人的哪些方法

  • 基础模型:基于 InternVL3 和 Qwen3-VL 的架构进行扩展。
  • 生成技术:参考了 Janus Pro 的解耦视觉编码策略,以及 Cosmos CI8×8 VAE 的图像 tokenizer。
  • 动作学习:采用了 Flow Matching(流匹配)框架来处理动作分布。

实验设置、数据、评估方式

  • 数据集
    • 预训练:InternData-A1(合成数据,63万条轨迹)+ AgiBot-World(真实数据,100万条轨迹)。
    • 微调/测试:12个真实世界任务 + RoboTwin 2.0 仿真基准。
  • 硬件:Genie-1, ARX Lift-2, ARX AC One 三种双手机器人。
  • 评估方式:在10个通用任务(如叠衣服、扫地)和2个动态专项任务(快递分拣、动态抓取食材)中进行30次重复测试,计算平均成功率。

提到的同类工作

  • π₀ (Pi-0):由 Google 等机构提出,利用互联网规模知识的 VLA 模型。
  • GR00T N1.5:NVIDIA 提出的通用人形机器人基础模型。
  • RT-1 / RT-2:Google 的机器人 Transformer 模型。
  • x-vla:另一项领先的 VLA 架构研究。

和本文相关性最高的3个文献
根据文中引用频率和对比实验,相关性最高的三个文献(或工作)是:

  1. π₀ (Pi-0)(Black et al., 2024):本文最主要的对比基准之一,文中多次提到 InternVLA-A1 在各项任务中超越了 π₀ 的表现。
  2. GR00T N1 / N1.5(Bjorck et al., 2025):本文最主要的对比基准之一,特别是在人形/通用机器人领域的对标模型。
  3. InternData-A1(Tian et al., 2025b):本文作者团队之前的工作,是本文模型预训练数据的核心来源,对本文的成功至关重要。

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询