定安县网站建设_网站建设公司_全栈开发者_seo优化
2026/1/16 13:10:54 网站建设 项目流程

本文探讨低代码平台Dify与专业编排框架LangGraph的融合,介绍LangGraph核心特性如持久化执行、人机交互等,以及"编排代码化,实现可视化"的集成思想。通过对话分析多智能体系统实战案例,展示这种融合如何提升开发效率、编排灵活性和系统可靠性,为AI应用开发提供全新路径。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

摘要:上一篇文章我们介绍了AI agent技术架构,里面有很多个智能体,需要多智能体协同实现一个完整的功能,目前一个明显的趋势正在形成:低代码平台与专业编排框架的深度融合。Dify作为领先的AI应用开发平台,以其直观的可视化界面降低了智能体构建门槛;而LangGraph作为LangChain推出的专业编排框架,则提供了复杂工作流所需的强大控制能力。这两者的结合,正在为企业构建多智能体系统开辟一条全新的路径。

01-LangGraph核心概念与特性

LangGraph是LangChain开发的一个低层级的编排框架和运行时,专门用于构建、管理和部署长时运行的、有状态的智能体。它具有以下核心特性:

特性描述
持久化执行构建能够从故障中恢复并长时间运行的智能体,可以从中断处继续执行
人机交互允许在任何节点检查或修改智能体的状态,融入人工监督
完整的内存系统为智能体提供短期工作内存(用于当前推理)和跨
Langsmith调试提供可视化工具追踪执行路径、捕获状态转换、获取详细运行时指标
生产就绪部署为有状态、长时运行的工作流提供可扩展的基础设施

LangGraph的官方文档如下:

https://docs.langchain.com/oss/python/langgraph/quickstart

而基础构建方法

从文档中的“Hello World”示例可以看出,构建LangGraph智能体的基本流程是:

1、定义状态类型:使用StateGraph(MessagesState)创建状态图

2、添加节点:通过graph.add_node()添加处理函数

3、设置边连接:使用graph.add_edge()定义节点间的流转关系

4、编译图:调用graph.compile()生成可执行图

5、调用执行:通过graph.invoke()传入初始状态执行图

02—dify和LangGraph技术融合:架构互补性解析****

1.1 技术定位与优势互补

技术组件核心优势在多智能体系统中的角色
LangGraph灵活的状态管理、复杂的图编排、持久化执行、人机交互智能体协作的大脑与神经系统,负责整体流程控制和状态管理
dify可视化构建、低代码开发、内置模版、易于部署智能体构建的工厂、快速创建专业化的智能体、提供友好交互界面

1.2 集成的想法:代码与低代码的协同

这种结合的核心思想是**“编排代码化,实现可视化”**:

  • LangGraph负责:定义智能体间的交互逻辑、状态流转规则、异常处理机制
  • Dify负责:实现单个智能体的专业能力、提供用户界面、管理知识库集成

1.3 实战案例:对话分析多智能体系统

假设我们需要构建一个对话分析系统,具备以下功能:

1、实时对话分类:识别对话意图和主题

2、情感分析:分析用户情绪变化

3、关键信息提取:提取重要实体和观点

4、自动摘要生成:生成对话摘要

5、异常检测:识别潜在问题或冲突

系统架构设计

LangGraph编排实现

# conversation_analysis_graph.py
from typing import TypedDict , List , Dict , Any , Literal
from langgraph . graph import StateGraph , END
# 定义状态结构
class ConversationState ( TypedDict ) :
"""对话分析系统的状态定义"""
# 输入相关
conversation_id : str
user_input : str c
onversation_history : List [ Dict [ str , Any ] ]
# 处理中间结果
intent : str
category : str
sentiment_scores : List [ float ]
entities : List [ Dict [ str , Any ] ]
key_points : List [ str ]
# 分析结果
sentiment_analysis : Dict [ str , Any ]
entity_analysis : Dict [ str , Any ]
summary : str
# 系统控制
current_step : Literal [ "classification" , "analysis" , "reporting" , "complete" ]
requires_human_review : bool
human_feedback : str
# 初始化Dify-LangGraph桥接
bridge = DifyLangGraphBridge ( dify_api_key = "your-dify-api-key" , dify_base_url = "https://api.dify.ai/v1" )
# 创建Dify智能体对应的LangGraph节点
classification_node = bridge . create_langgraph_node ( "conversation-classifier" , "classifier" )
analysis_node = bridge . create_langgraph_node ( "conversation-analyzer" , "analyzer" )
reporting_node = bridge . create_langgraph_node ( "report-generator" , "reporter" )
# 构建状态图
workflow = StateGraph ( ConversationState )
# 添加节点 workflow . add_node ( "classifier" , classification_node [ 1 ] )
workflow . add_node ( "analyzer" , analysis_node [ 1 ] )
workflow . add_node ( "reporter" , reporting_node [ 1 ] )
workflow . add_node ( "human_review" , human_review_node )
workflow . add_node ( "quality_check" , quality_check_node )
# 定义条件路由函数
def route_by_conversation_state ( state : ConversationState ) - > str :
"""根据对话状态决定下一步"""
if state [ "current_step" ] == "classification" :
return "classifier"
elif state [ "current_step" ] == "analysis" :
# 检查是否需要人工审核
if ( state . get ( "sentiment_scores" ) and min ( state [ "sentiment_scores" ] ) < - 0.7 ) : state [ "requires_human_review" ] = True
return "human_review"
return "analyzer"
elif state [ "current_step" ] == "reporting" :
# 质量检查
if len ( state . get ( "key_points" , [ ] ) ) < 2 :
return "quality_check"
return "reporter"
elif state [ "current_step" ] == "complete" : return END
else :
# 默认开始分类
state [ "current_step" ] = "classification"
return "classifier"
# 设置路由
Workflow . add_conditional_edges ( "classifier" , route_by_conversation_state ,
{ "analyzer" : "analyzer" , "human_review" : "human_review" , END :
END }
workflow . add_conditional_edges ( "analyzer" , route_by_conversation_state , { "reporter" : "reporter" , "quality_check" : "quality_check" , "human_review" : "human_review" } )
workflow . add_edge ( "reporter" , END )
workflow . add_edge ( "quality_check" , "analyzer" )
# 重新分析
workflow . add_edge ( "human_review" , "analyzer" )
# 审核后继续分析 # 设置入口点
workflow . set_entry_point ( "classifier" )
# 编译图
conversation_analysis_app = workflow . compile ( )

通过结合Dify和LangGraph构建多智能体系统,我们获得了以下优势:

1、开发效率:Dify的可视化界面大幅降低智能体开发门槛

2、编排灵活性:LangGraph提供强大的工作流编排能力

3、系统可靠性:持久化状态和故障恢复机制

4、可扩展性:易于添加新的智能体和功能模块

5、人机协作:完善的人机协作机制

本文介绍了实现多智能体一个实现方式,当然还有其他方式,大家可以在评论区留言一起探讨。

CSDN独家福利

最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询