一、项目介绍
摘要
本项目基于先进的YOLOv8目标检测算法,开发了一套高效准确的小麦叶片病害自动检测系统。系统针对五种常见小麦叶片健康状况进行分类识别,包括健康叶片(Healthy)、白粉病(Powdery_Mildew)、斑枯病(Septoria)、秆锈病(Stem_Rust)和黄锈病(Yellow_Rust)。项目采用大规模专业数据集进行模型训练与验证,其中训练集包含2100张高质量标注图像,验证集366张,测试集138张,确保了模型的泛化能力和可靠性。该系统能够实时检测小麦叶片病害类型,为农业生产者提供及时的病害诊断信息,辅助早期干预决策,对保障小麦产量和质量具有重要意义。
项目意义
1. 农业生产的迫切需求
小麦作为全球主要粮食作物之一,其产量和质量直接关系到粮食安全。叶片病害是影响小麦生产的主要因素,导致产量损失,严重时甚至绝收。传统病害识别依赖农业专家目视检查,存在效率低、成本高、主观性强等缺点。本自动化检测系统可显著提高病害识别效率,实现大面积田块的快速监测,满足现代农业对精准植保的技术需求。
2. 技术创新价值
本项目采用最先进的YOLOv8算法进行病害识别,相比传统图像处理方法具有显著优势:
实现了端到端的病害检测与分类,识别速度可达实时水平
对复杂田间环境下的病害特征具有强鲁棒性
模型轻量化设计便于部署到移动设备和边缘计算设备
五分类任务设计覆盖了小麦最主要的叶片病害类型
3. 经济效益分析
早期准确识别病害可大幅减少农药使用量,降低生产成本的同时减少环境污染。及时防治可有效控制病害扩散,可挽回产量损失。
4. 社会生态效益
项目成果将促进智慧农业发展,提升农业数字化水平:
减轻农业技术人员工作负担,解决基层植保人员不足问题
为精准施药提供科学依据,减少化学农药滥用
建立可复制的农作物病害智能诊断模式
积累的病害数据库可为农业科研提供宝贵资源
5. 可持续发展贡献
系统有助于实现联合国可持续发展目标(SDGs)中的"零饥饿"和"负责任的消费与生产"。通过技术手段保障粮食安全,促进农业绿色生产,对应对全球气候变化背景下的农业生产挑战具有长远意义。
本项目不仅具有直接的实用价值,也为农作物病害智能监测领域的后续研究提供了重要参考,是人工智能技术与现代农业深度融合的典型示范。随着系统的不断完善和推广应用,将在保障国家粮食安全、推动农业现代化进程中发挥越来越重要的作用。
基于深度学习的小麦叶片病害检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili
基于深度学习的小麦叶片病害检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)
二、项目功能展示
系统功能
✅图片检测:可对单张图片进行检测,返回检测框及类别信息。
✅批量图片检测:支持文件夹输入,一次性检测多张图片,生成批量检测结果。
✅视频检测:支持视频文件输入,检测视频中每一帧的情况。
✅摄像头实时检测:连接USB 摄像头,实现实时监测,
图片检测
该功能允许用户通过单张图片进行目标检测。输入一张图片后,YOLO模型会实时分析图像,识别出其中的目标,并在图像中框出检测到的目标,输出带有目标框的图像。批量图片检测
用户可以一次性上传多个图片进行批量处理。该功能支持对多个图像文件进行并行处理,并返回每张图像的目标检测结果,适用于需要大规模处理图像数据的应用场景。
视频检测
视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频,并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示,适用于视频监控和分析等场景。
摄像头实时检测
该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测,实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用,提供即时反馈。
核心特点:
- 高精度:基于YOLO模型,提供精确的目标检测能力,适用于不同类型的图像和视频。
- 实时性:特别优化的算法使得实时目标检测成为可能,无论是在视频还是摄像头实时检测中,响应速度都非常快。
- 批量处理:支持高效的批量图像和视频处理,适合大规模数据分析。
三、数据集介绍
数据集概述:
本项目的数据集包含5类病害标签:Healthy(健康叶片)、Powdery_Mildew(白粉病)、Septoria(叶枯病)、Stem_Rust(秆锈病)、Yellow_Rust(黄锈病)。数据集分为训练集、验证集和测试集,具体数量如下:
训练集:2100张图像
验证集:366张图像
测试集:138张图像
数据集结构:
数据集中的每张图像都经过标注,标注信息包括:
类别标签:Healthy、Powdery_Mildew、Septoria、Stem_Rust、Yellow_Rust
边界框坐标:病害区域的位置信息(x_min, y_min, x_max, y_max)
数据来源:
数据集来源于公开的农业病害数据库或合作种植园提供的小麦叶片图像数据。所有数据均经过专业人员的标注和审核,确保标注的准确性。
数据预处理:
图像增强:为了提升模型的泛化能力,对训练集进行了数据增强操作,包括随机旋转、翻转、缩放、亮度调整等。
归一化:将所有图像归一化到相同的尺寸(如640x640),以适应YOLOv8的输入要求。
标注格式转换:将标注信息转换为YOLOv8所需的格式(类别索引、归一化的边界框坐标)。
数据集特点:
类别多样性:数据集涵盖了5种常见的小麦病害和健康叶片,能够满足实际种植中的病害检测需求。
高质量标注:所有标注均由专业人员完成,确保标注的准确性和可靠性。
样本分布:训练集、验证集和测试集的划分合理,确保模型训练和评估的科学性。
数据集划分:
训练集:用于训练YOLOv8模型,优化模型参数。
验证集:用于调整超参数和评估模型在训练过程中的表现,防止过拟合。
测试集:用于最终评估模型的性能,确保模型在未见数据上的泛化能力。
数据集配置文件data.yaml
train: .\datasets\images\train val: .\datasets\images\val test: .\datasets\images\test # Classes nc: 6 # class names names: [ 'hand-raising', 'reading', 'writing','using phone', 'bowing the head', 'leaning over the table']数据集制作流程
标注数据:使用标注工具(如LabelImg、CVAT等)对图像中的目标进行标注。每个目标需要标出边界框,并且标注类别。
转换格式:将标注的数据转换为YOLO格式。YOLO标注格式为每行:
<object-class> <x_center> <y_center> <width> <height>,这些坐标是相对于图像尺寸的比例。分割数据集:将数据集分为训练集、验证集和测试集,通常的比例是80%训练集、10%验证集和10%测试集。
准备标签文件:为每张图片生成一个对应的标签文件,确保标签文件与图片的命名一致。
调整图像尺寸:根据YOLO网络要求,统一调整所有图像的尺寸(如416x416或608x608)。
四、项目环境配置
创建虚拟环境
首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。
终端输入
conda create -n yolov8 python==3.9
激活虚拟环境
conda activate yolov8
安装cpu版本pytorch
pip install torch torchvision torchaudio
pycharm中配置anaconda
安装所需要库
pip install -r requirements.txt
五、模型训练
训练代码
from ultralytics import YOLO model_path = 'yolov8s.pt' data_path = 'datasets/data.yaml' if __name__ == '__main__': model = YOLO(model_path) results = model.train(data=data_path, epochs=500, batch=64, device='0', workers=0, project='runs/detect', name='exp', )根据实际情况更换模型 yolov8n.yaml (nano):轻量化模型,适合嵌入式设备,速度快但精度略低。 yolov8s.yaml (small):小模型,适合实时任务。 yolov8m.yaml (medium):中等大小模型,兼顾速度和精度。 yolov8b.yaml (base):基本版模型,适合大部分应用场景。 yolov8l.yaml (large):大型模型,适合对精度要求高的任务。
--batch 64:每批次64张图像。--epochs 500:训练500轮。--datasets/data.yaml:数据集配置文件。--weights yolov8s.pt:初始化模型权重,yolov8s.pt是预训练的轻量级YOLO模型。
训练结果
六、核心代码
# -*- coding: utf-8 -*- import os import sys import time import cv2 import numpy as np from PIL import ImageFont from PyQt5.QtCore import Qt, QTimer, QThread, pyqtSignal, QCoreApplication from PyQt5.QtWidgets import (QApplication, QMainWindow, QFileDialog, QMessageBox, QWidget, QHeaderView, QTableWidgetItem, QAbstractItemView) from ultralytics import YOLO # 自定义模块导入 sys.path.append('UIProgram') from UIProgram.UiMain import Ui_MainWindow from UIProgram.QssLoader import QSSLoader from UIProgram.precess_bar import ProgressBar import detect_tools as tools import Config class DetectionApp(QMainWindow): def __init__(self, parent=None): super().__init__(parent) self.ui = Ui_MainWindow() self.ui.setupUi(self) # 初始化应用 self._setup_ui() self._connect_signals() self._load_stylesheet() # 模型和资源初始化 self._init_detection_resources() def _setup_ui(self): """初始化UI界面设置""" self.display_width = 700 self.display_height = 500 self.source_path = None self.camera_active = False self.video_capture = None # 配置表格控件 table = self.ui.tableWidget table.verticalHeader().setSectionResizeMode(QHeaderView.Fixed) table.verticalHeader().setDefaultSectionSize(40) table.setColumnWidth(0, 80) # ID列 table.setColumnWidth(1, 200) # 路径列 table.setColumnWidth(2, 150) # 类别列 table.setColumnWidth(3, 90) # 置信度列 table.setColumnWidth(4, 230) # 位置列 table.setSelectionBehavior(QAbstractItemView.SelectRows) table.verticalHeader().setVisible(False) table.setAlternatingRowColors(True) def _connect_signals(self): """连接按钮信号与槽函数""" self.ui.PicBtn.clicked.connect(self._handle_image_input) self.ui.comboBox.activated.connect(self._update_selection) self.ui.VideoBtn.clicked.connect(self._handle_video_input) self.ui.CapBtn.clicked.connect(self._toggle_camera) self.ui.SaveBtn.clicked.connect(self._save_results) self.ui.ExitBtn.clicked.connect(QCoreApplication.quit) self.ui.FilesBtn.clicked.connect(self._process_image_batch) def _load_stylesheet(self): """加载CSS样式表""" style_file = 'UIProgram/style.css' qss = QSSLoader.read_qss_file(style_file) self.setStyleSheet(qss) def _init_detection_resources(self): """初始化检测相关资源""" # 加载YOLOv8模型 self.detector = YOLO('runs/detect/exp/weights/best.pt', task='detect') self.detector(np.zeros((48, 48, 3))) # 预热模型 # 初始化字体和颜色 self.detection_font = ImageFont.truetype("Font/platech.ttf", 25, 0) self.color_palette = tools.Colors() # 初始化定时器 self.frame_timer = QTimer() self.save_timer = QTimer() def _handle_image_input(self): """处理单张图片输入""" self._stop_video_capture() file_path, _ = QFileDialog.getOpenFileName( self, '选择图片', './', "图片文件 (*.jpg *.jpeg *.png)") if not file_path: return self._process_single_image(file_path) def _process_single_image(self, image_path): """处理并显示单张图片的检测结果""" self.source_path = image_path self.ui.comboBox.setEnabled(True) # 读取并检测图片 start_time = time.time() detection_results = self.detector(image_path)[0] processing_time = time.time() - start_time # 解析检测结果 boxes = detection_results.boxes.xyxy.tolist() self.detection_boxes = [list(map(int, box)) for box in boxes] self.detection_classes = detection_results.boxes.cls.int().tolist() confidences = detection_results.boxes.conf.tolist() self.confidence_scores = [f'{score * 100:.2f}%' for score in confidences] # 更新UI显示 self._update_detection_display(detection_results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(image_path) def _update_detection_display(self, results, process_time): """更新检测结果显示""" # 显示处理时间 self.ui.time_lb.setText(f'{process_time:.3f} s') # 获取带标注的图像 annotated_img = results.plot() self.current_result = annotated_img # 调整并显示图像 width, height = self._calculate_display_size(annotated_img) resized_img = cv2.resize(annotated_img, (width, height)) qimage = tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) self.ui.PiclineEdit.setText(self.source_path) # 更新检测数量 self.ui.label_nums.setText(str(len(self.detection_classes))) def _calculate_display_size(self, image): """计算适合显示的图像尺寸""" img_height, img_width = image.shape[:2] aspect_ratio = img_width / img_height if aspect_ratio >= self.display_width / self.display_height: width = self.display_width height = int(width / aspect_ratio) else: height = self.display_height width = int(height * aspect_ratio) return width, height def _update_object_selection(self): """更新目标选择下拉框""" options = ['全部'] target_labels = [ f'{Config.names[cls_id]}_{idx}' for idx, cls_id in enumerate(self.detection_classes) ] options.extend(target_labels) self.ui.comboBox.clear() self.ui.comboBox.addItems(options) def _show_detection_details(self, index=0): """显示检测目标的详细信息""" if not self.detection_boxes: self._clear_detection_details() return box = self.detection_boxes[index] self.ui.type_lb.setText(Config.CH_names[self.detection_classes[index]]) self.ui.label_conf.setText(self.confidence_scores[index]) self.ui.label_xmin.setText(str(box[0])) self.ui.label_ymin.setText(str(box[1])) self.ui.label_xmax.setText(str(box[2])) self.ui.label_ymax.setText(str(box[3])) def _clear_detection_details(self): """清空检测详情显示""" self.ui.type_lb.setText('') self.ui.label_conf.setText('') self.ui.label_xmin.setText('') self.ui.label_ymin.setText('') self.ui.label_xmax.setText('') self.ui.label_ymax.setText('') def _display_results_table(self, source_path): """在表格中显示检测结果""" table = self.ui.tableWidget table.setRowCount(0) table.clearContents() for idx, (box, cls_id, conf) in enumerate(zip( self.detection_boxes, self.detection_classes, self.confidence_scores)): row = table.rowCount() table.insertRow(row) # 添加表格项 items = [ QTableWidgetItem(str(row + 1)), # ID QTableWidgetItem(source_path), # 路径 QTableWidgetItem(Config.CH_names[cls_id]), # 类别 QTableWidgetItem(conf), # 置信度 QTableWidgetItem(str(box)) # 位置坐标 ] # 设置文本居中 for item in [items[0], items[2], items[3]]: item.setTextAlignment(Qt.AlignCenter) # 添加到表格 for col, item in enumerate(items): table.setItem(row, col, item) table.scrollToBottom() def _process_image_batch(self): """批量处理图片""" self._stop_video_capture() folder = QFileDialog.getExistingDirectory(self, "选择图片文件夹", "./") if not folder: return self.source_path = folder valid_extensions = {'jpg', 'png', 'jpeg', 'bmp'} for filename in os.listdir(folder): filepath = os.path.join(folder, filename) if (os.path.isfile(filepath) and filename.split('.')[-1].lower() in valid_extensions): self._process_single_image(filepath) QApplication.processEvents() # 保持UI响应 def _update_selection(self): """更新用户选择的检测目标显示""" selection = self.ui.comboBox.currentText() if selection == '全部': boxes = self.detection_boxes display_img = self.current_result self._show_detection_details(0) else: idx = int(selection.split('_')[-1]) boxes = [self.detection_boxes[idx]] display_img = self.detector(self.source_path)[0][idx].plot() self._show_detection_details(idx) # 更新显示 width, height = self._calculate_display_size(display_img) resized_img = cv2.resize(display_img, (width, height)) qimage = tools.cvimg_to_qpiximg(resized_img) self.ui.label_show.clear() self.ui.label_show.setPixmap(qimage) self.ui.label_show.setAlignment(Qt.AlignCenter) def _handle_video_input(self): """处理视频输入""" if self.camera_active: self._toggle_camera() video_path = self._get_video_path() if not video_path: return self._start_video_processing(video_path) self.ui.comboBox.setEnabled(False) def _get_video_path(self): """获取视频文件路径""" path, _ = QFileDialog.getOpenFileName( self, '选择视频', './', "视频文件 (*.avi *.mp4)") if path: self.source_path = path self.ui.VideolineEdit.setText(path) return path return None def _start_video_processing(self, video_path): """开始处理视频流""" self.video_capture = cv2.VideoCapture(video_path) self.frame_timer.start(1) self.frame_timer.timeout.connect(self._process_video_frame) def _stop_video_capture(self): """停止视频捕获""" if self.video_capture: self.video_capture.release() self.frame_timer.stop() self.camera_active = False self.ui.CaplineEdit.setText('摄像头未开启') self.video_capture = None def _process_video_frame(self): """处理视频帧""" ret, frame = self.video_capture.read() if not ret: self._stop_video_capture() return # 执行目标检测 start_time = time.time() results = self.detector(frame)[0] processing_time = time.time() - start_time # 解析结果 self.detection_boxes = results.boxes.xyxy.int().tolist() self.detection_classes = results.boxes.cls.int().tolist() self.confidence_scores = [f'{conf * 100:.2f}%' for conf in results.boxes.conf.tolist()] # 更新显示 self._update_detection_display(results, processing_time) self._update_object_selection() self._show_detection_details() self._display_results_table(self.source_path) def _toggle_camera(self): """切换摄像头状态""" self.camera_active = not self.camera_active if self.camera_active: self.ui.CaplineEdit.setText('摄像头开启') self.video_capture = cv2.VideoCapture(0) self._start_video_processing(0) self.ui.comboBox.setEnabled(False) else: self.ui.CaplineEdit.setText('摄像头未开启') self.ui.label_show.clear() self._stop_video_capture() def _save_results(self): """保存检测结果""" if not self.video_capture and not self.source_path: QMessageBox.information(self, '提示', '没有可保存的内容,请先打开图片或视频!') return if self.camera_active: QMessageBox.information(self, '提示', '无法保存摄像头实时视频!') return if self.video_capture: self._save_video_result() else: self._save_image_result() def _save_video_result(self): """保存视频检测结果""" confirm = QMessageBox.question( self, '确认', '保存视频可能需要较长时间,确定继续吗?', QMessageBox.Yes | QMessageBox.No) if confirm == QMessageBox.No: return self._stop_video_capture() saver = VideoSaverThread( self.source_path, self.detector, self.ui.comboBox.currentText()) saver.start() saver.update_ui_signal.connect(self._update_progress) def _save_image_result(self): """保存图片检测结果""" if os.path.isfile(self.source_path): # 处理单张图片 filename = os.path.basename(self.source_path) name, ext = filename.rsplit(".", 1) save_name = f"{name}_detect_result.{ext}" save_path = os.path.join(Config.save_path, save_name) cv2.imwrite(save_path, self.current_result) QMessageBox.information( self, '完成', f'图片已保存至: {save_path}') else: # 处理文件夹中的图片 valid_exts = {'jpg', 'png', 'jpeg', 'bmp'} for filename in os.listdir(self.source_path): if filename.split('.')[-1].lower() in valid_exts: filepath = os.path.join(self.source_path, filename) name, ext = filename.rsplit(".", 1) save_name = f"{name}_detect_result.{ext}" save_path = os.path.join(Config.save_path, save_name) results = self.detector(filepath)[0] cv2.imwrite(save_path, results.plot()) QMessageBox.information( self, '完成', f'所有图片已保存至: {Config.save_path}') def _update_progress(self, current, total): """更新保存进度""" if current == 1: self.progress_dialog = ProgressBar(self) self.progress_dialog.show() if current >= total: self.progress_dialog.close() QMessageBox.information( self, '完成', f'视频已保存至: {Config.save_path}') return if not self.progress_dialog.isVisible(): return percent = int(current / total * 100) self.progress_dialog.setValue(current, total, percent) QApplication.processEvents() class VideoSaverThread(QThread): """视频保存线程""" update_ui_signal = pyqtSignal(int, int) def __init__(self, video_path, model, selection): super().__init__() self.video_path = video_path self.detector = model self.selection = selection self.active = True self.colors = tools.Colors() def run(self): """执行视频保存""" cap = cv2.VideoCapture(self.video_path) fourcc = cv2.VideoWriter_fourcc(*'XVID') fps = cap.get(cv2.CAP_PROP_FPS) size = ( int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) filename = os.path.basename(self.video_path) name, _ = filename.split('.') save_path = os.path.join( Config.save_path, f"{name}_detect_result.avi") writer = cv2.VideoWriter(save_path, fourcc, fps, size) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) current_frame = 0 while cap.isOpened() and self.active: current_frame += 1 ret, frame = cap.read() if not ret: break # 执行检测 results = self.detector(frame)[0] frame = results.plot() writer.write(frame) self.update_ui_signal.emit(current_frame, total_frames) # 释放资源 cap.release() writer.release() def stop(self): """停止保存过程""" self.active = False if __name__ == "__main__": app = QApplication(sys.argv) window = DetectionApp() window.show() sys.exit(app.exec_())七、项目
演示与介绍视频:
基于深度学习的小麦叶片病害检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)_哔哩哔哩_bilibili
基于深度学习的小麦叶片病害检测系统(YOLOv8+YOLO数据集+UI界面+Python项目源码+模型)