宜昌市网站建设_网站建设公司_HTTPS_seo优化
2026/1/18 18:13:14 网站建设 项目流程

一、本文介绍

本文给大家介绍Multi-Scale Attention(MSA)多尺度注意力模块改进YOLO26。MSA 模块为 YOLO26 提供了更强的多尺度建模能力和显著的判别特征增强,提升了目标检测与异常检测的鲁棒性和精度,同时保持高效、轻量、可即插即用具体怎么使用请看全文!

🔥欢迎订阅我的专栏、带你学习使用最新-最前沿-独家YOLO26创新改进!🔥

YOLO26专栏改进目录:全新YOLO26改进专栏包含卷积、主干网络、各种注意力机制、检测头、损失函数、Neck改进、小目标检测、二次创新模块、多种组合创新改进、全网独家创新等创新点改进

全新YOLO26专栏订阅链接:全新YOLO26创新改进高效涨点+永久更新中(至少500+改进)+高效跑实验发论文

本文目录

一、本文介绍

二、MSA 模块介绍

2.1 MSA模块结构图: 

2.2 MSA模块的作用

2.3 MSA模块的原理

三、完整核心代码 

四、手把手教你添加模块和修改tasks.py文件

五、创建涨点yaml配置文件

🚀 创新改进 1:

🚀 创新改进2 :

六、模型训练,正常运行


 

二、MSA 模块介绍

摘要:图像编辑技术迅速发展,促进了创新使用案例和恶意操纵数字图像。基于深度学习的方法最近在像素级伪造定位上取得了高准确率,但它们在计算开销和有限的表示能力方面常常面临挑战,特别是对于细微或复杂的篡改。在本文中,我们提出了M2SFormer,这是一个新颖的基于Transformer编码器的框架,旨在克服这些挑战。与分开处理空间和频率线索的方法不同,M2SFormer在跳跃连接中统一了多频率和多尺度的注意力,利用全局上下文更好地捕捉多样的伪造伪迹。此外,我们的框架通过利用全局先验图,一个表征伪造定位难度的曲率度量,来解决上采样过程中细节丢失的问题,然后引导一个困难引导的注意力模块,更有效地保留细微的操作。在多个基准数据集上的广泛实验表明,M2SFormer在检测和定位伪造方面超过了现有的

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询