湖北省网站建设_网站建设公司_导航菜单_seo优化
2026/1/18 14:35:25 网站建设 项目流程

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

✅成品或者定制,扫描文章底部微信二维码。


(1) 毫米波MIMO-NOMA系统模型与多线性广义奇异值分解方法

随着无线通信技术向更高频段和更大带宽方向发展,毫米波通信因其丰富的可用频谱资源成为第五代及未来移动通信系统的关键技术之一。然而毫米波信号在传播过程中面临严重的路径损耗和大气吸收衰减,需要采用大规模天线阵列结合波束成型技术来补偿信道衰落。非正交多址接入技术通过在功率域实现用户复用,允许多个用户共享相同的时频资源块,相比传统正交多址方式可以显著提升系统频谱效率和用户接入能力。将非正交多址技术与毫米波大规模MIMO系统相结合,可以充分发挥两种技术的优势,但也带来了复杂的波束成型设计问题。

毫米波大规模MIMO系统中,由于射频链路的功耗和成本限制,通常采用混合波束成型架构代替全数字波束成型方案。混合架构将波束成型分解为模拟域和数字域两部分,模拟波束成型通过移相器网络实现,数字波束成型在基带信号处理单元完成。在非正交多址系统中,同一波束服务的多个用户通过叠加编码在功率域区分,接收端采用串行干扰消除技术依次解调各用户信号。混合波束成型的设计目标是联合优化模拟预编码矩阵和数字预编码矩阵,使系统的总和速率最大化。

多线性广义奇异值分解方法为毫米波MIMO-NOMA系统的波束成型设计提供了理论框架。该方法将多用户信道矩阵进行联合分解,获得各用户信道的主特征向量作为波束成型的基础方向。具体而言,对于包含多个用户的下行链路传输场景,首先将所有用户的信道矩阵按一定规则组织为张量形式,然后通过迭代优化算法求解张量分解问题,获得反映各用户信道特性的因子矩阵。模拟波束成型向量由分解得到的主奇异向量确定,数字波束成型则根据用户间干扰情况进一步调整。在NOMA场景下,还需要根据用户信道条件差异确定叠加编码的功率分配系数和串行干扰消除的解码顺序,这些因素共同影响系统的整体性能表现。

(2) 神经网络拟合多线性分解的可行性验证与全数字波束成型设计

传统的多线性广义奇异值分解算法虽然能够获得理论最优解,但其计算复杂度随着天线数量和用户数量的增加而急剧上升,难以满足实时通信系统的时延要求。深度学习技术的引入为加速波束成型计算提供了新的途径,其核心思想是利用神经网络学习从信道状态信息到波束成型方案的直接映射,从而将在线计算转化为网络前向推理,大幅降低计算延迟。本研究首先在全数字波束成型场景下验证了神经网络拟合多线性分解算法的可行性。

神经网络的输入为系统中所有用户的信道矩阵,输出为对应的分解结果即各用户的波束成型向量。网络采用全连接架构,包含多个隐藏层,每层使用整流线性激活函数引入非线性表达能力。考虑到信道矩阵通常为复数形式,网络的输入输出层分别处理实部和虚部分量,然后在输出端重新组合为复数波束向量。训练数据集通过大量信道实现及其对应的传统算法分解结果构建,网络训练的目标是最小化网络输出与标准算法输出之间的均方误差。

实验结果表明,经过充分训练的神经网络能够在毫秒级时间内完成波束成型向量的计算,而传统迭代算法在相同配置下需要数百毫秒甚至更长时间。在分解精度方面,神经网络的输出与标准算法结果之间的归一化均方误差低于百分之一,这一精度水平对于通信系统性能的影响可以忽略。更重要的是,以神经网络输出的波束向量进行全数字波束成型时,系统和速率与采用传统算法时基本一致,验证了深度学习方法替代传统数值算法的可行性。这一阶段的工作为后续混合波束成型设计中引入深度学习技术奠定了基础。

(3) 面向混合波束成型的深度学习优化方法与性能评估

在验证了神经网络拟合基本分解算法可行性的基础上,本研究进一步将深度学习方法扩展到混合波束成型场景,并引入系统约束条件构建端到端的优化框架。混合波束成型相比全数字方案需要额外考虑模拟波束的恒模约束,即移相器网络只能改变信号相位而不能调节幅度,这一硬件约束给优化问题带来了非凸性,增加了求解难度。同时在NOMA系统中还需满足用户解码顺序约束,即信道条件较好的用户必须先消除信道条件较差用户的干扰后才能解调自身信号。

import torch import torch.nn as nn import torch.optim as optim import numpy as np class ChannelGenerator: def __init__(self, num_tx, num_rx, num_paths=8, num_users=4): self.num_tx = num_tx self.num_rx = num_rx self.num_paths = num_paths self.num_users = num_users def generate_mmwave_channel(self, batch_size): channels = [] for _ in range(batch_size): user_channels = [] for u in range(self.num_users): H = np.zeros((self.num_rx, self.num_tx), dtype=np.complex128) for l in range(self.num_paths): alpha = (np.random.randn() + 1j * np.random.randn()) / np.sqrt(2) aod = np.random.uniform(-np.pi/2, np.pi/2) aoa = np.random.uniform(-np.pi/2, np.pi/2) at = np.exp(1j * np.pi * np.arange(self.num_tx) * np.sin(aod)) / np.sqrt(self.num_tx) ar = np.exp(1j * np.pi * np.arange(self.num_rx) * np.sin(aoa)) / np.sqrt(self.num_rx) H += alpha * np.outer(ar, at.conj()) user_channels.append(H * np.sqrt(self.num_tx * self.num_rx / self.num_paths)) channels.append(user_channels) return channels class HybridBeamformingNetwork(nn.Module): def __init__(self, num_tx, num_rf, num_users, hidden_dim=512): super(HybridBeamformingNetwork, self).__init__() self.num_tx = num_tx self.num_rf = num_rf self.num_users = num_users input_dim = 2 * num_users * num_tx * num_tx self.encoder = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.BatchNorm1d(hidden_dim), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.BatchNorm1d(hidden_dim), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.BatchNorm1d(hidden_dim) ) self.analog_head = nn.Linear(hidden_dim, 2 * num_tx * num_rf) self.digital_head = nn.Linear(hidden_dim, 2 * num_rf * num_users) self.power_head = nn.Linear(hidden_dim, num_users) def forward(self, channel_input): features = self.encoder(channel_input) analog_out = self.analog_head(features) analog_phase = torch.atan2(analog_out[:, :self.num_tx*self.num_rf], analog_out[:, self.num_tx*self.num_rf:]) analog_real = torch.cos(analog_phase) analog_imag = torch.sin(analog_phase) digital_out = self.digital_head(features) digital_real = digital_out[:, :self.num_rf*self.num_users] digital_imag = digital_out[:, self.num_rf*self.num_users:] power_coeffs = torch.softmax(self.power_head(features), dim=1) return analog_real, analog_imag, digital_real, digital_imag, power_coeffs class NOMAConstraintLoss: def __init__(self, power_budget=1.0, penalty_weight=10.0): self.power_budget = power_budget self.penalty_weight = penalty_weight def compute_sum_rate(self, channels, analog_bf, digital_bf, power_coeffs, noise_power=1e-3): batch_size = len(channels) sum_rate = torch.zeros(batch_size) for b in range(batch_size): for u in range(len(channels[b])): signal_power = power_coeffs[b, u] * torch.abs(torch.sum(analog_bf[b] * digital_bf[b, u])) ** 2 interference = sum(power_coeffs[b, j] for j in range(u)) sinr = signal_power / (interference + noise_power) sum_rate[b] += torch.log2(1 + sinr) return sum_rate def compute_loss(self, sum_rate, power_coeffs): rate_loss = -torch.mean(sum_rate) power_violation = torch.relu(torch.sum(power_coeffs, dim=1) - self.power_budget) power_penalty = self.penalty_weight * torch.mean(power_violation ** 2) order_penalty = torch.zeros(1) for i in range(power_coeffs.shape[1] - 1): order_penalty += torch.mean(torch.relu(power_coeffs[:, i] - power_coeffs[:, i+1])) return rate_loss + power_penalty + self.penalty_weight * order_penalty class MLGSVDApproximator(nn.Module): def __init__(self, num_tx, num_users, hidden_dim=256): super(MLGSVDApproximator, self).__init__() input_dim = 2 * num_users * num_tx * num_tx output_dim = 2 * num_users * num_tx self.net = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim) ) self.num_tx = num_tx self.num_users = num_users def forward(self, channels): flat_input = channels.view(channels.shape[0], -1) output = self.net(flat_input) real_part = output[:, :self.num_users * self.num_tx] imag_part = output[:, self.num_users * self.num_tx:] beamformers = real_part.view(-1, self.num_users, self.num_tx) norms = torch.norm(beamformers, dim=2, keepdim=True) return beamformers / (norms + 1e-8) def train_hybrid_beamforming(model, channel_generator, epochs=1000, batch_size=64): optimizer = optim.Adam(model.parameters(), lr=0.001) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=200, gamma=0.5) constraint_loss = NOMAConstraintLoss(power_budget=1.0, penalty_weight=10.0) for epoch in range(epochs): channels = channel_generator.generate_mmwave_channel(batch_size) channel_tensor = prepare_channel_input(channels) optimizer.zero_grad() analog_r, analog_i, digital_r, digital_i, power = model(channel_tensor) sum_rate = constraint_loss.compute_sum_rate(channels, analog_r, digital_r, power) loss = constraint_loss.compute_loss(sum_rate, power) loss.backward() optimizer.step() scheduler.step() if epoch % 100 == 0: print(f'Epoch {epoch}, Loss: {loss.item():.4f}, Avg Sum Rate: {sum_rate.mean().item():.4f}') def prepare_channel_input(channels): batch_size = len(channels) num_users = len(channels[0]) num_tx = channels[0][0].shape[1] tensor_list = [] for b in range(batch_size): user_list = [] for u in range(num_users): H = channels[b][u] real_flat = np.real(H).flatten() imag_flat = np.imag(H).flatten() user_list.extend(real_flat) user_list.extend(imag_flat) tensor_list.append(user_list) return torch.tensor(tensor_list, dtype=torch.float32) def evaluate_performance(model, channel_generator, num_trials=100): total_rate = 0 for _ in range(num_trials): channels = channel_generator.generate_mmwave_channel(1) channel_tensor = prepare_channel_input(channels) with torch.no_grad(): analog_r, analog_i, digital_r, digital_i, power = model(channel_tensor) constraint = NOMAConstraintLoss() rate = constraint.compute_sum_rate(channels, analog_r, digital_r, power) total_rate += rate.item() return total_rate / num_trials if __name__ == '__main__': channel_gen = ChannelGenerator(num_tx=64, num_rx=4, num_paths=8, num_users=4) model = HybridBeamformingNetwork(num_tx=64, num_rf=8, num_users=4) print("mmWave MIMO-NOMA hybrid beamforming system initialized")


如有问题,可以直接沟通

👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇👇

需要专业的网站建设服务?

联系我们获取免费的网站建设咨询和方案报价,让我们帮助您实现业务目标

立即咨询