视频演示
基于深度学习的PCB板元器件检测系统
1. 前言
大家好,欢迎来到 Coding 茶水间!
当前,在电子制造与 PCB 检测领域,传统人工目检效率低、易漏检,而现有自动化方案往往识别种类有限、适应性弱,难以满足高精度、多目标的实时检测需求。为此,今天我们带来《基于 YOLO 算法的 PCB 板元器件检测系统》,该系统支持对 22 种元器件(如电池、电容、电阻、晶体管等)进行高效识别,具备多模态输入(图片、视频、文件夹批量、摄像头实时检测)、动态参数调节、语音播报、结果保存与导出等功能,并通过可视化界面实现交互式操作,有效提升检测效率与精准度。接下来,我们将逐步演示系统的核心功能与使用流程。

2. 项目演示
2.1 用户登录界面
登录界面布局简洁清晰,左侧展示系统主题,用户需输入用户名、密码及验证码完成身份验证后登录系统。

2.2 新用户注册
注册时可自定义用户名与密码,支持上传个人头像;如未上传,系统将自动使用默认头像完成账号创建。

2.3 主界面布局
主界面采用三栏结构,左侧为功能操作区,中间用于展示检测画面,右侧呈现目标详细信息,布局合理,交互流畅。

2.4 个人信息管理
用户可在此模块中修改密码或更换头像,个人信息支持随时更新与保存。
2.5 多模态检测展示
系统支持图片、视频及摄像头实时画面的目标检测。识别结果将在画面中标注显示,并且带有语音播报提醒,并在下方列表中逐项列出。点击具体目标可查看其类别、置信度及位置坐标等详细信息。

2.6 检测结果保存
可以将检测后的图片、视频进行保存,生成新的图片和视频,新生成的图片和视频中会带有检测结果的标注信息,并且还可以将所有检测结果的数据信息保存到excel中进行,方便查看检测结果。
2.7 多模型切换
系统内置多种已训练模型,用户可根据实际需求灵活切换,以适应不同检测场景或对比识别效果。
、
3.模型训练核心代码
本脚本是YOLO模型批量训练工具,可自动修正数据集路径为绝对路径,从pretrained文件夹加载预训练模型,按设定参数(100轮/640尺寸/批次8)一键批量训练YOLOv5nu/v8n/v11n/v12n模型。
4. 技术栈
-
语言:Python 3.10
-
前端界面:PyQt5
-
数据库:SQLite(存储用户信息)
-
模型:YOLOv5、YOLOv8、YOLOv11、YOLOv12
5. YOLO模型对比与识别效果解析
5.1 YOLOv5/YOLOv8/YOLOv11/YOLOv12模型对比
基于Ultralytics官方COCO数据集训练结果:
|
模型 |
尺寸(像素) |
mAPval 50-95 |
速度(CPU ONNX/毫秒) |
参数(M) |
FLOPs(B) |
|---|---|---|---|---|---|
|
YOLO12n |
640 |
40.6 |
- |
2.6 |
6.5 |
|
YOLO11n |
640 |
39.5 |
56.1 ± 0.8 |
2.6 |
6.5 |
|
YOLOv8n |
640 |
37.3 |
80.4 |
3.2 |
8.7 |
|
YOLOv5nu |
640 |
34.3 |
73.6 |
2.6 |
7.7 |
关键结论:
-
精度最高:YOLO12n(mAP 40.6%),显著领先其他模型(较YOLOv5nu高约6.3个百分点);
-
速度最优:YOLO11n(CPU推理56.1ms),比YOLOv8n快42%,适合实时轻量部署;
-
效率均衡:YOLO12n/YOLO11n/YOLOv8n/YOLOv5nu参数量均为2.6M,FLOPs较低(YOLO12n/11n仅6.5B);YOLOv8n参数量(3.2M)与计算量(8.7B)最高,但精度优势不明显。
综合推荐:
-
追求高精度:优先选YOLO12n(精度与效率兼顾);
-
需高速低耗:选YOLO11n(速度最快且精度接近YOLO12n);
-
YOLOv5nu/YOLOv8n因性能劣势,无特殊需求时不建议首选。
5.2 数据集分析

数据集中训练集和验证集一共800张图片,数据集目标类别33种:电池, 按钮, 蜂鸣器, 电容, 时钟, 连接器, 二极管, 显示屏, 保险丝, 散热器, 集成电路, 电感, 发光二极管, 焊盘, 引脚, 电位器, 继电器, 电阻, 开关, 传感器/换能器, 变压器, 晶体管,数据集配置代码如下:


上面的图片就是部分样本集训练中经过数据增强后的效果标注。
5.3 训练结果

混淆矩阵显示中识别精准度显示是一条对角线,方块颜色越深代表对应的类别识别的精准度越高。

F1指数(F1 Score)是统计学和机器学习中用于评估分类模型性能的核心指标,综合了模型的精确率(Precision)和召回率(Recall),通过调和平均数平衡两者的表现。
当置信度为0.308时,所有类别的综合F1值达到了0.65(蓝色曲线)。

mAP@0.5:是目标检测任务中常用的评估指标,表示在交并比(IoU)阈值为0.5时计算的平均精度均值(mAP)。其核心含义是:只有当预测框与真实框的重叠面积(IoU)≥50%时,才认为检测结果正确。
图中可以看到综合mAP@0.5达到了0.694(69.4%),准确率非常高。
6. 源码获取方式
源码获取方式:https://www.bilibili.com/video/BV1gtBrBfEtX
本文介绍了一个基于YOLO算法的PCB板元器件检测系统,该系统可识别22种元器件,支持图片、视频、批量文件和摄像头实时检测。系统采用Python3.10开发,前端使用PyQt5,数据库为SQLite,集成了YOLOv5/v8/v11/v12等多种模型。通过对比测试显示,YOLO12n模型精度最高(mAP40.6%),YOLO11n速度最快(56.1ms)。系统提供可视化界面、语音播报、结果保存等功能,训练结果显示mAP@0.5达到69.4%,有效提升了PCB检测的效率和准确性。
